p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(a1(x1)), x2)
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(a1(x1)), x2)
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(a1(x1)), x2)
Used ordering: Polynomial Order [17,21] with Interpretation:
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
POL( P2(x1, x2) ) = max{0, x2 - 2}
POL( p2(x1, x2) ) = x1 + x2 + 1
POL( a1(x1) ) = 2
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))